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Abstract—Achieving seamless human-robot collaboration in
tasks with uncertainty requires anticipating human intentions.
In order to overcome the limitations of classical techniques
for inferring human intentions, which often struggle due to
delayed articulation and lack of knowledge about spatio-temporal
dependencies, this study proposes an approach centered around
real-time prediction of human intention using Long-Short Term
Memories (LSTMs). To achieve this goal, the human hands and
assembly product components were detected in each frame, using
a novel dataset, the former is then used as the primary input
to our LSTM model. Finally, we demonstrate and validate the
effectiveness of this framework in a real industrial assembly
scenario, where a robotic agent utilizes the predicted intention
to efficiently assist the human in successfully completing the
assembly of a product. The results indicate, with high confidence,
a response time about three times faster using our approach, on
average, compared to waiting for the object detection module to
recognize that a component was removed from a work bin.

Index Terms—hand segmentation, intention recognition, deep
learning, long short term memory

I. INTRODUCTION

Solving a problem that involves cooperation requires, in
tasks with at least some level of uncertainty, a certain syn-
chronization between teammates. This would enable agents
involved in the problem-solving to anticipate each other’s
needs, avoiding potential bottlenecks in production. Whenever
human and robot are involved in such tasks, some means of
preempting their actions through direct or indirect communi-
cation can be lost e.g. recognition of body language, hand sig-
nals, or speech. Autonomous robots could compensate for this
lost communication by anticipating their human teammates’
plans based on their recent actions. Thus, this work tackles
human-robot collaboration with the hypothesis that estimating
human intention based on their recent actions can improve
collaboration between human-robot teams.

Oftentimes in industrial scenarios, tasks have to dynami-
cally adapt to unforeseen events such as faulty components
or missing equipment. Our work focuses on one particular
case where such events happen: an industrial micro-controller
housing assembly. The housing construction can start from
multiple distinct initial human actions, however, each action

Fig. 1: Collaborative task of micro-controller housing assem-
bly (upper image). In the bottom image, the robot correctly
estimates user intentions and is able to preemptively choose
the correct action.

requires a specific reaction from the robot to proceed to the
next step of the assembly.

Consider a scenario, such as shown in Fig. 1, where a person
decides to attach the upper part of the housing to the micro-
controller. Based on that, the robot should start attaching the
lower part of the micro-controller housing to the fan. Thus,
the casing can be put together in the next step. Conversely,
if the person decides to start from the lower part, the robot
should adapt accordingly.

The aforementioned term “adaptation” hides an underlying
problem – it could cause a robot to wait until a person
finishes their action in order to react. Our work tackles this
problem through the estimation of human intention based on



recent actions. For that, two contributions are described in
this work. First, two datasets were created, one composed of
about a thousand images focusing on labeled data for hand
segmentation models, while the other one is composed of
hundreds of short videos with hand motion. From the two
datasets created, the one related to hand segmentation has been
made publicly available1. Our last contribution is a method
for human intention estimation based on a Long-Short Term
Memory (LSTM) model [1].

For analysis of our results, a number of live tests are
performed using the aforementioned datasets. Furthermore,
more live tests using the complete system are executed to
assess its usability in the real world along with its run-time
speed.

II. LITERATURE REVIEW

The application of collaborative robots has demonstrated
significant effectiveness in diverse tasks like assembly, con-
struction, and inspection. To establish successful collaboration
between humans and robots, it is vital for robots to possess
the capability of identifying and predicting human targets and
intentions. This involves monitoring and predicting human ac-
tions within the framework of the overall task plan, facilitating
a unique form of collaboration where robots predominantly
rely on implicit cues rather than explicit instructions from their
human counterparts to guide their actions.

Several notable studies have delved into the field of Human-
Robot Collaboration (HRC). In [2] and [3], comprehensive
insights into the cutting-edge technologies and methods em-
ployed in this area are offered. [4] propose a framework that
utilizes human body gestures to command robots in manual
assembly lines within the automotive industry. In a comparable
manner, [5] explores the utilization of Human-Robot inter-
action in urban search and rescue scenarios, including how
robots’ data assists humans spread across different locations.

In [6], a framework was proposed for HRC using a combina-
tion of Spatial-Temporal Graph Convolutional Networks and
Long Short-Term Memory Networks, specifically for hand-
held object identification based on YOLOv3. While Graph
Convolutional Networks are effective in understanding the
relationships between nearby data points, their computational
cost, memory consumption, and training time increase as the
number of points grows. In contrast, [7] utilized Convolutional
Neural Networks (CNNs) with Long-Short Term Memory to
accurately predict human motion in a computer disassembly
task, overcoming the computation overhead of VGGNet and
achieving faster evaluation.

Perception plays a pivotal role in facilitating Human-Robot
interaction, as it enables the robot to gain awareness of its
environment and the precise nature of the product to be
handled [8]. For instance, in assembly tasks, the deployment
of well-suited vision sensors empowers the robot to effectively
detect objects, obstacles, and components, thereby acquir-
ing a comprehensive understanding of the ongoing assembly

1Dataset can be found in github.com/jgrimaldo/intentionrecog/

Fig. 2: Architecture of our approach. Dashed lines indicate
modules that have been previously developed. The main output
of this work is in red color, that is, a mapping of the human
partner’s possible intentions and an associated probability to
each intention.

process. Advanced techniques, such as object detection and
instance segmentation, have demonstrated promising outcomes
in enhancing perceptual capabilities, thereby contributing to
the overall effectiveness of collaborative tasks.

Numerous research studies have made significant contribu-
tions to the domains of object detection and hand recognition.
For instance, in [9] a real-time object detection technique using
single-shot detectors was introduced, offering applicability
across diverse devices and environments. Moreover, [10] pre-
sented a comprehensive method that integrates depth features,
object contours, and hierarchical segmentation, leading to
precise object detection and segmentation. [11] employed a
cascaded Mask R-CNN approach to effectively detect essential
objects in assembly scenarios. Similarly, [12] leveraged a pre-
trained YOLOv5 model to enhance the assembly process in
human-robot collaboration systems.

Regarding hand detection, [13] devised a fully-labeled ap-
proach for detecting hands in dynamic Ego-Centric videos,
albeit with limitations in real-time performance. [14] intro-
duced a rapid hand detection and tracking method utilizing
a single depth camera, demonstrating robust performance and
fast inference times; however, this method is contingent upon
the availability of depth data. [15] proposed a real-time hand



(a) (b)

Fig. 3: The use-case components and setup: (a) Exploded view
of the Product made of the complete case, the Raspberry Pi,
and the fan (b) the collaborative assembly cell layout.

recognition framework with a particular focus on hand gesture
recognition using CNNs. [16] utilized Mobile-Net and SSD
architectures to achieve efficient and accurate hand detection,
employing feature maps of varying resolutions to accommo-
date different hand sizes. Nevertheless, their approach, based
on single-shot detectors, prioritizes speed over performance,
which may introduce the possibility of false positives.

III. EXTENDED MODULES FOR TASK

This section first defines the scope of the task being tack-
led. Afterward, to better accomplish this task, the extensions
made to the previously developed modules are presented. The
extensions made to these modules, enabling their integration
with our work, are also described. The main modules required
for intention estimation are shown in the architecture overview
in Fig. 2.

A. Task Description

The use case investigated in this work consists of an
assembly task (shown in Fig. 3b) where an HRC-capable robot
is to assist a human worker in completing the task in a human-
like fashion.

The product to be assembled consists of four main compo-
nents - a 3D printed case composed of a top part and a bottom
part, a Raspberry Pi micro-controller, and a 40 mm DC fan that
is intended to be bolted to the top part for cooling purposes (as
shown in Fig. 3a). The components are sorted in different bins
in a way that facilitates their handling using the robot gripper.
Moreover, two depth cameras are used with a field of view
covering the assembly area. The first camera tracks human
hand motions to infer intentions, while the second camera is
for object detection.

The assembly of the product can be performed in different
orders, e.g. starting from the top part followed by the fan,
bolting, bottom part then Raspberry Pi, closing the case then
palletizing the finished product or the other way around, it is
important for the task sharing approach to accommodate the
dynamics of the task in a way that does not encumber the
worker and spares them unnecessary and long waiting times.
In other words, it is to be avoided that the robot agent starts

its action after the human finished theirs, as that would lead
to a waiting phase on the latter’s side. It should be noted
that certain tasks can only be performed by human workers,
such as bolting the fan and closing the case, as they require
flexible hand control. On the other hand, there are tasks that
can be performed by both humans and autonomous robots
interchangeably.

B. Real-time Hand segmentation

Numerous cutting-edge methodologies have emerged for the
purpose of object detection and instance segmentation. How-
ever, a majority of these techniques tend to prioritize either
segmentation performance or run-time speed. Our task requires
real-time execution with acceptable detection performance.
Preferred techniques for such requirements include SSD [17]
and YOLO [18].

In an attempt to correctly balance these trade-offs, a tech-
nique named You Only Look At Coefficients (YOLACT) is
used. The main concepts governing the choice and configu-
ration of the YOLACT model are described in our previous
work [19].

Although the results in [19] showed promise, its smaller
dataset limited the ability of YOLACT of generalizing to
distinct users and scenarios. For that, we further extended its
training dataset to a little over 1000 positive image samples
with different people and even more variation in hand posi-
tions. This dataset is made publicly available in this work1.

As shown in Fig. 2, the outcome of the hand segmentation
is fed to the intention recognition module. It consists of hand
keypoint coordinates as well as its depth value with respect to
the camera in the form of a time-series 3-dimensional tensor
[X1, Y1, Z1] · · · ·[Xt, Yt, Zt]. It is restricted to a single keypoint
per hand to avoid noise and null points during occlusion and
overlapping hands. Nevertheless, null detections can still occur
in the single keypoint approach yet they can be recovered by
means of interpolation.

C. Assembly Object Detection

As can be seen in Fig. 3b, each work cell is composed
of multiple objects that are either work tools or materials for
the micro-controller assembly along with partially and fully
assembled components.

Detecting and tracking these objects, as they move along
the work cell, was done in [19]. For that, the first step is
preprocessing the image using Gaussian filters in order to
smooth out noise. Afterward, the image is binarized using
adaptive thresholding with a value that is calculated based
on the Gaussian mean within each region. Finally, each
grid region containing a distinct component, such as fans or
micro-controllers, is obtained through hierarchical extraction
of contours from which corner points are extracted. These
corner points are used to perspective transform the detected
grid into a flattened image that can then be indexed by grid
position.

These grid positions are a part of the required input for our
intention recognition.



IV. INTENTION ESTIMATION FROM RECENT ACTIONS

For a smooth and human-like collaboration, the robot agent
needs to infer subsequent goals of the human at each step
by predicting their intentions, then perform helping assembly
steps. This section deals with a deep-learning-based approach
used to infer human intentions based on the history of their
hand motions.

In our aforementioned previous work [19], a basic method
for predicting hand heading was introduced. It uses the Eu-
clidean distance between the hand keypoint and the center of
each bin on 2D images to detect where the hand is closest to
and starting from a specific threshold determines the heading
i.e. the intended object. Due to its simplicity, this method fails
to capture temporal and spatial relations between consecutive
frames which is crucial for a successful prediction.

To address these issues, we not only incorporate depth
information but also adopt an approach that can extract spatial
representations of specific features in sequential data. This
enables us to accurately predict probable human intentions.

A. Deep learning-based Model

After segmenting each instance of the human hand in the
environment, as introduced in Sec. III-B, we feed the output
to the deep-learning model specifically a Long-Short Term
Memory model.

Introduced by [1] in 1997, LSTMs are a type of Re-
current Neural Networks (RNN) with feedback connections
that enable capturing and retaining long-term dependencies in
sequential data.

An LSTM network is composed of several units, also called
cells, each unit is made of an input gate (it), an output gate
(Ot), a forget gate (ft), and a cell state (Ct).

For the purposes of this work, a PyTorch-based model is
developed, operating as follows:

• Model input: the series of 3-dimensional tensor
[X1, Y1, Z1]····[Xt, Yt, Zt] representing the hand keypoint
coordinates.

• Model output: classification based on the anticipated
destination of the hand, specifically into the categories:
[Bin−Bottom,Bin−Raspi,Bin−Top,Bin−Fan].

• Network: It is fundamentally composed of multiple re-
current hidden layers and a final output layer. In order to
capture more intricate temporal patterns across various
time steps, multiple LSTM layers are stacked. Thus
facilitating spatial distribution of the model parameters
and leading to faster convergence ( [20]). Additionally, a
dropout layer is incorporated into the network to prevent
overfitting on the training data.

B. An Intention Dataset

To train the aforementioned LSTM model, a custom dataset
has been created. It consists of over 200 videos of different
hands moving to grasp one of the objects from all four bins.
The data is divided into training, testing, and validation sets.
The data is captured by means of an Azure Kinect camera
[21] using both the depth and RGB channels and processed at

first using the YOLACT model of Sec.III-B. To ensure data
diversity, videos have been recorded with different users with
different hand features. Each recording starts when the hand
starts moving towards a bin and ends once an object is grasped
resulting in an average length of 2.5s, about 75 frames, per
video, depending on the pace of the user.

Each frame is then passed to the Hand Segmentation
module to determine the (X,Y ) coordinates of the hand’s
keypoint. Afterward, these keypoints are projected on the
depth map corresponding to the frame in question in order
to determine the Z coordinate. In the subsequent step, the
processed data is input into the LSTM model in the form
[Xyolact, Yyolact, ZDepthMap].

Note that various interpolation techniques are employed to
handle missing data or undetected hand movements in some
frames. More specifically, if the hand cannot be accurately
identified in the environment, its value would be updated as
NaN, then over batches of size 75, each value is scanned, and
missing values are addressed by applying linear interpolation
in forward and then backward direction. This procedure has
proven to be efficient even for the first and last elements of
the batch as it handles all the missing values as equally spaced
and finds the best fit with respect to the previous value.

C. Discussion

The number of valid worker configurations per work cell is
limited to one. Deviation from this prescribed configuration,
for example, a worker standing at a different edge of the table,
may result in inaccurate LSTM predictions. Specifically, while
workers may have the flexibility to approach cells from various
sides, only the single most optimal configuration for the given
task setup is considered valid for the purposes of our system.

Although this limitation reduces some flexibility, similar
requirements are common even in conventional industrial cell
layouts. As such, addressing this issue is beyond the scope of
this study.

V. EVALUATION

After briefly describing our experimental setup, the eval-
uation section of this study focuses on two aspects of our
solution. The first aspect involves determining the best set of
hyperparameters, such as learning rates and choice optimizers,
for our LSTM model. The second aspect shifts the focus to
real-world evaluation, where we assess the practical benefits
of the LSTM model for intention recognition.

A. Experimental Setup

This work is experimentally evaluated on a system with an
Intel core™ i7-8700 CPU with a total of 6 cores and 12 threads
running a base frequency of 3.20 GHz, 32 GB RAM, and an
NVIDIA Geforce GTX 1080 GPU with 8 GB VRAM, then
deployed to use-case introduced in Sec. III-A.

The demonstrator, shown in Fig. 3b, consists of a multi-cell
setting for pre-assembly, collaborative assembly, and palletiz-
ing stations. A collaborative robot arm, UR10e [22], equipped
with a gripper is mounted in the middle of the multi-cell so



Optimizer ADAM NADAM RMSPROP SGD

Train Accuracy 0.8345 0.8257 0.8264 0.5784
Train Loss 0.3974 0.3899 0.4128 1.3451

Val. Accuracy 0.8449 0.8321 0.8322 0.5541
Val. Loss 0.3685 0.3651 0.3477 1.3984

TABLE I: Loss and Accuracy for optimizers on LSTM

LR 1E-6 1E-5 1E-4 5E-4 5E-4

Train Accuracy 0.8111 0.8843 0.8736 0.8184 0.2687
Train Loss 0.6120 0.2818 0.2850 0.4176 1.3783

Val. Accuracy 0.8232 0.8877 0.8940 0.8793 0.3032
Val. Loss 0.5776 0.2789 0.2901 0.3803 1.3114

TABLE II: Loss and Accuracy for different learning rates on
LSTM

that it is able to reach all mentioned stations, two 3D Azure
Kinect cameras are mounted above the assembly station to
monitor the environment and the human worker.

B. Preliminary Results

1) Numerical Performance Assessment: The impact of var-
ious parameters on the model is investigated to assess the
performance of our LSTM-based intention recognition model.
These parameters include various learning rates, the config-
uration of stacked and unstacked LSTM layers, the number
of hidden layer units in the LSTM network, different layer
depths, and different optimizers. Additionally, a comparison
with other recurrent neural network (RNN) variants is con-
ducted, namely RNNs, bidirectional RNNs (Bi-RNNs), and
bidirectional LSTMs (Bi-LSTMs).

First, the performance using multiple optimizers is tested,
keeping the remaining hyperparameters constant. Based on the
results shown in Table I, we opt for ADAM as it yields faster
and more stable convergence with accuracy near 85%.

In addition, the effect of various learning rates is investi-
gated. As shown in Table II, it has been noted that a model
trained with a learning rate of 1e-4 was the most stable
and achieved an accuracy of around 89%. Estimation failures
were, among other reasons, caused by partial occlusion of the
person’s hand by the robot’s arm or hesitation of the person
on the correct action to perform, leading to backtracking or
similar actions.

Furthermore, stacking multiple LSTMs proved fruitful, as
they outperformed a single-unstacked LSTM model. More
specifically, with 3 LSTMs an average accuracy of over 89%
was achieved. Finally, varying the number of the hidden layers,
shows that as their number of units increases, the model is
better able to generalize. A 512 hidden layer units-model has
the best performance with an accuracy near 90%, beyond
which it reaches a plateau and some instability is observed.

Finally, an optimal LSTM model was compared against an
optimal RNN model as well as both their bidirectional variants.
As shown in Fig. 4 LSTM and Bi-LSTM outperformed RNN
by quite a large margin. Similarly, LSTMs and Bi-LSTMs
achieved accuracy in the range of 89% versus 67% and 20%

(a) Loss vs Number of Iterations

(b) Accuracy vs Number of Iterations

Fig. 4: Comparing LSTM, RNN, Bi-RNN and Bi-LSTM in
terms of Loss and Accurany.

for Bi-RNNs and RNNs respectively. Although Bi-LSTMs
performance was comparable to the unidirectional one, the
former took longer to train, thus, we opted for the latter.

2) Assessment on Demonstrator : The presented modules
i.e. Intention Estimation and Object Detection were integrated
into the aforementioned demonstrator and orchestrated using
Robot Operating System (ROS). To evaluate the intention
estimation, we ran multiple tests and noted for each: the time
required by our model to submit a prediction along with the
time until a hand reaches a bin.

The system has been tested on different manipulation speeds
representing different human workers’ profiles. Slow manipu-
lation is usually observed among inexperienced workers and
when the target object is distant from the worker.

Our approach is compared to an object detection-based one
where the action performed by the human is inferred once a
missing object is detected in one of the bins (see Fig. 5d).

For predictions, our method relied on acting based on
the highest probabilities within a specific window, which
smoothed out short-term fluctuations, focusing on stable
trends. The window size was determined empirically and
linked to a probability matrix. Experiments showed that adjust-
ing the window size has minimal impact on predictions, with
larger windows offering only marginal benefits. Moreover, our
threshold is set high enough to minimize uncertainty.

As exemplified in Fig. 5, on average, the system could
predict the human intention with a high confidence level in
about 1/3 of the action time. The mean time for human action



(a) Human hands detected
at t = 0s

(b) Intention predicted
at t = 0.30s

(c) Human reached object
at t = 0.86s

(d) One less Object detected
inside bin at t = 2.20s

Fig. 5: Human hand motion sequence for grasping a fan. In this example, it took 0.3s to predict the intention, 0.86s for the
full action whereas the object detection-based approach took 2.2s to infer the human action.

is 1.24 seconds while our prediction requires 0.43 seconds. In
average, our approach executes 0.81 seconds faster, with a
variance of 0.047 and a standard deviation of 0.218.

The results mentioned above enable the robot to start acting
before the object is grasped and minimizing waiting times for
the worker. Certain factors such as the speed of the hand,
its orientation, and lighting conditions, can cause detection
failures or fluctuations over a few frames as the hand moves.
During these fluctuations, no intention can be predicted. How-
ever, since the prediction is continuously updated, no false
predictions have been observed during the experiments. In
cases where the human intentionally tries to deceive the model,
the prediction confidence levels decrease.

VI. CONCLUSION

This study introduces a novel approach to enhance human-
robot collaboration by anticipating human intentions. It ad-
dresses limitations of traditional methods used to infer human
goals and actions, which often struggle with delayed articula-
tion and often neglect spatio-temporal dependencies.

A point not addressed was the impact of external factors
like noise or lighting conditions and scenarios with multiple
humans, which would affect accuracy of intention prediction.
Future work should focus on enhancing model robustness by
incorporating a wider range of situations and a task planning
module to overcome the manually established relationship
between human intention and robot action.
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